
International Journal of Computer Trends and Technology (IJCTT) – Volume 67 Issue 5- May 2019

ISSN: 2231-2803 http://www.ijcttjournal.org Page 58

Cache Contention on Multicore Systems

An Ontology-based Approach

Maruthi Rohit Ayyagari

College of Business, University of Dallas, Texas, USA

Abstract — Multicore processors have proved to be

the right choice for both desktop and server systems

because it can support high performance with an
acceptable budget expenditure. In this work, we have

compared several works in cache contention and

found that such works have identified several

techniques for cache contention other than cache size

including FSB, Memory Controller and prefetching

hardware. We found that Distributed Intensity Online

(DIO) is a very promising cache contention

algorithm since it can achieve up to 2% from the

optimal technique. Moreover, we propose a new

framework for cache contention based on resource

ontologies. In which ontologies instances will be used
for communication between diverse processes instead

of grasping schedules based on hardware.

Keywords - component; multicore; cache; contention;

FSB; ontology

I. INTRODUCTION

According to Moore law, system speed is going to

increases dramatically in 18-24 months [1]. As a

result, multicore processors have become so dominant

for both desktops and servers because it can give more

performance compared to traditional systems.

Advanced multicore computing systems usually share

caches to support data sharing and allow fast

communication. The most important cache is the last

level cache (LLC) which is being shared by more than

one core, usually two cores.

Although the LLC will allow fast communication
between cores, the cache can be contended by

different cores. In this case, the system will need to

read data and instructions from the main memory and

fetch it back to the cache which is considered a time-

consuming process compared to the speed of the

cores. This process is referred to as a cache miss and

is very painful to the application that requires high

Quality of Service (QoS) such as could computing

environment.

To understand how to cache contention can occur,

Figure 1 illustrates a scenario. Assume we are using
c0 and c1 cores, and if two threads of the same

application are run together, then it is possible to have

cache contention on the L2 cache (referred to as intra-

application contention). If different applications

threads run then a possible cache contention on L2, is

also conceivable. Another type of contention called
Front Side Bus (FSB) contention might occur if

different threads are run on different cores that do not

share the same L2 cache, for example, c0 and c3

cores.

There have been many approaches to resolve or

reduce such cache contention, most of these

approaches depend on three major components which

are: the used benchmark, the classification scheme,

the policies, and the used algorithms. The NAS

Parallel Benchmarks (NPB) [2], [3], The Standard
Performance Evaluation Corporation (SPEC) [4], [5]

and Princeton Application Repository for Shared-

Memory Computers (PARSEC) [6] are among the

popular benchmarking software. Schemes are used for

finding the best co-runner of an application with

another. Scheduling algorithms implement the

policies to assign threads to cores given the

application classification. There are two categories of

such algorithms, one is online, and the other is offline.

The online algorithm gets cache statistics using the

performance counter [7], while the offline algorithms

use a prediction approach to calculate statistics offline
before performing the benchmark, such as the total

cache access in a specific number of millions of

transactions [8].

To the best of our knowledge, none of the

proposed solutions to the cache contention gives a

holistic view of all the possible factors that might

affect cache contention performance. This work tries

to give an insight into this direction. The contribution

of this work is 1) compare various classification

schemes and used policies 2) compare famously used
algorithms namely: Utility Cache Partition [9], Stack

Distance Profile [10], Page Coloring [11], Static and

dynamic Static Scheduling Order Adjustment (SOA)

[12], Distributed Intensity (DI) [13], and Distributed

Intensity Online (DIO) [13]; and 3) propose a model

tocache contention based on an ontology.

International Journal of Computer Trends and Technology (IJCTT) – Volume 67 Issue 5- May 2019

ISSN: 2231-2803 http://www.ijcttjournal.org Page 59

Fig 1. Illustration of cache contention.

The paper is organized as follows. Section II
describes Schemes and policies. The comparison

between algorithms is conducted in Section III. Our

proposed model is in Section IV. We discuss the

results in Section V. Related work is in Section VI.

VII concludes the paper.

II. CLASSIFICATION SCHEMES AND

POLICIES

A. Classification schemes

Schemes are used for finding which threads

should and should not be scheduled together. It is very

crucial to select application threads such that they

both execute together and the cache minimally

contends. On the one hand, if two application is cash

busters, we will end up with deficient performance

due to high cache misses. On the other hand, if the

two applications are using the low cache, then the
cache is wasted.

Miss Rate: A cache miss denotes a failed try to

read or write cached data, which in turn causes a high

delay. Cache misses can be due to instruction, data

read, or write misses. A read miss from an instruction

cache frequently causes the highest delay, because the

executed thread, has to stall until the instruction is

fetched from memory. Research has been conducted

on cache behavior in an attempt to find the best

combination of cache size with other factors. One

substantial contribution by Mark Hill [14], is the
separation of misses into three categories:

Compulsory misses initiated by the first reference to a

datum, Capacity misses are those misses that occur

due to the limited size of the cache associativity, and

Conflict misses which are misses that could have

been escaped, if the cache did not remove an entry

before. Another work by Knauerhase et al. found the

best association between two applications threads

[15].

Animal Class Scheme: Dynamic cache

partitioning scheme that performs marginally

enhanced than other schemes such as Utility Cache
Page Partition (UCP) while incurring a lower

implementation cost. It depends on heuristics based

on animal classification [16]: Turtles: low cache

usage; Sheep: miss rate is low, but it is insensitive to

the number of cache ways allotted to it; Rabbits: miss

rate is low but is sensitive to several apportioned

cache ways — the Tasmanian Devils[16] — threads

with high miss rate, and low cache reuse.

Pain Scheme: A Scheme based on two concepts

of cache sensitivity and cache intensity. The cache
sensitivity is the amount of how much an application

will feel pain when cache space is taken from it due to

the contention while intensity refers to the quantity of

how much a thread will hurt others by taking space

from them, in a shared cache [13]. These values are

formally calculated and summed relative to each

other, to calculate the effect of both to each other.

“Perfect” Scheduling Scheme (Optimal

Scheme): This scheme constructs a graph

representation of the threads or applications that need

to execute (co-run together) at some point in time.

Threads are signified as nodes linked by edges; edges
weights are evaluated by the sum of the joint co-run

degradations between two threads. The optimal

scheduling job can be found by solving the graph

minimization problem [17]

B. policies

A scheduling policy is the set of decisions made

regarding cache scheduling priorities. A scheduling

algorithm is the instructions that implement a given

scheduling policy. There are different policies aside

from DEFAULT Linux policy such as:

“Perfect” Scheduling Policy: Jiang’s way for

outlining the optimal and the worst thread schedule

policy[17].

Greedy Policy: a process is selected in the slave

CPU to couple with the current process on the master

CPU such that the effect to the process on the master

CPU is the minimum.

Statistical Policy: a policy which depends on

recorded history data to make the co-runner selection

as accurate as possible. This type of policy is more

accurate than a greedy policy, but it has more

overhead since more data structures have to be

implemented to support information history storage,

such as an array of PIDs [18].

Stall Cycles Policy: In this policy, the stall(wait)

cycles are used to select co-runners. Co-runners are

selected such that they have the most significant

difference in stall cycles. Under this selection, the
tasks with different performance will undoubtedly be

co-scheduled together.[19]

Centralized Sort: Application threads lists are

sorted by the miss rate value, and then they are

allocated to cores in order. In this policy, the total

miss rate of allocated is flattened across every

cache[20].

III. EVALUATION OF CACHE CONTENTION

ALGORITHMS

FSB

International Journal of Computer Trends and Technology (IJCTT) – Volume 67 Issue 5- May 2019

ISSN: 2231-2803 http://www.ijcttjournal.org Page 60

A scheduling algorithm is the programming code

that implements a given scheduling policy. There

have been many algorithms in operating system

community in order to resolve cache contention. We

categorize them as offline or online algorithms. The

online algorithm gets cache statistics using the
performance counter, while offline ones uses a

prediction approaches (the number of last level cache

access per one million transactions) to calculate

statistics offline before performing the benchmark.

Table 1 is a comparison of some of these algorithms.

Cache Page Coloring Algorithm: This algorithm

enforces page coloring on only a small set of

frequently accessed pages for each process. The cost

of identifying hot pages online is reduced by

leveraging the knowledge of spatial locality during a

page table scan of access bits. [11]

Utility Cache Page Partition (UCP): a custom
hardware solution that estimates each thread’s number

of hits and misses for all possible number of ways

assigned to the application in the cache built on stack-

distance profiles. The cache is then partitioned for the

co-running applications to cut down the number of

cache misses. This algorithm decreases cache

contention once co-runners are known ahead of time.

[9]

Table1- Algorithms comparison

Measure

Algorithm

Contention

Measurement

Policy Scheme Dependency

Cache Page

Coloring [11]

LLC Cache page

coloring

N/A -

Cache

Partition [9]

LLC - - Hardware

Stack

Distance

Profile [10]

LLC - - Stack profile

DI [13] L1, L2, memory

controller

Centralized

order

Miss rate,

pain

Stack profile

DIO [13] L1, L2, memory

controller

Centralized

order

Miss rate,

pain

Stack profile

Static SOA

[12]

L1, L2, FSB Stall cycles - -

Dynamic

SOA [12]

L1, L2, FSB Stall cycles - -

Distributed Intensity (DI) and DI Online

(DIO): DI assign threads to the solo miss rate as

found by the stack distance profile algorithm. Then
applications are distributed through caches such that

the miss rates are distributed as consistently as

probable. DIO is built on the same classification

scheme and scheduling policies as DI, but it obtains

the miss rates of threads online via performance

counters.

Static and Dynamic SOA: The idea of these

algorithms is to reduce cache contention by adjusting

the scheduling order of threads to execute

appropriately. The Static Scheduling Order

Adjustment (SOA) method acquires the cache

requirement information statically by offline profiling.

IV. PROPOSED FRAMEWORK

We propose to use an ontology for resolving

shared cache contention. Ontologies have proven to

be one way of ensuring various mapping systems

[21][22]. Moreover, ontologies were invented as one
way to resolve the problem of interoperability so we

can utilize this idea in resolving cache contention

problems [23]. The nature of the cache contention

problem reveals to be possibly solved by an ontology.

Since the current solutions to cache contention are

application and architecture specific, we believe an

ontology-based approach might give some insight into

a possible solution.

Figure 2, shows our proposed model. We want

each thread to have the ability to update the instance

of the ontology so that we can integrate different

processes or threads regardless of the system
architecture. The ontology

Fig 2. cache contention ontology model

class in Figure 2 is from the work of Rohloff [24].

However, further refinement to this class model is

needed in order to have a model that match cache

contention requirements [25], using datamining

techniques [26], and integrating software engineering

techniques [27][28].

V. DISCUSSION

Surveyed works have identified several reasons

for cache contention including cache space, FSB,

Memory Controller, prefetching hardware. DIO

perform within 2% of the optimal [29]. The highest

impact of contention-aware scheduling procedures is

in improving the quality of service or performance

isolation for individual applications. Front Side Bus is

a significant factor of the benchmarks and degrades

performance by more than 11% [12]. For the dynamic

SOA method, the execution time reduction can
achieve up to 7.09% [18].

We noticed that the surveyed algorithms are

application and architecture dependent. Moreover,

each one has its own benchmark which is relatively

International Journal of Computer Trends and Technology (IJCTT) – Volume 67 Issue 5- May 2019

ISSN: 2231-2803 http://www.ijcttjournal.org Page 61

very difficult to conduct a real comparison between

them. Therefore, a holistic review is needed to find an

efficient algorithm.

Therefore, we propose a new framework for cache

contention based on resource ontologies. In which

ontologies instances will be used for communication
between diverse processes instead of grasping

schedules based on hardware.

VI. RELATED WORK

Although there has been tremendous growth in the

use of ontologies to facilitate systems and service

integration in general , there has been little work on

general ontologies for the critical challenge of

resource sharing as needed for offline or online

resource allocation and reallocation. [23], [30]–[32].

Probably the nearest work to our work is the one

introduced by Rohloff [24]. However, it was not
intended for cache contention, and it was introduced

for any resource sharing for the goal of integration.

VII. CONCLUSION

Several works have identified several reasons for

cache contention other than cache size including:

FSB, Memory Controller, prefetching hardware. DIO

perform within 2% of the optimal. The highest impact

of contention-aware scheduling techniques is in

improving the quality of service or performance

isolation for individual applications. Front Side Bus is

a significant factor of the benchmarks and degrades
performance by more than 11%. For the dynamic

SOA method, the execution time reduction can

achieve up to 7.09%. We propose a new model for

cache contention based on ontologies. In which

ontologies instances will be used for communication

between diverse processes instead of mastering

schedules based on hardware. Our model still needs

further research to quantify its parameters. The

proposed approach can resolve the problems of

architecture dependent technique by using a shared

resource. In the future, the proposed technique will be

elaborated and examined.

REFERENCES

[1] V. Transcript, ―Excerpts from a Conversation with

Gordon Moore: Moore" s Law,‖ Intel Corp., 2005.

[2] D. Bailey, T. Harris, W. Saphir, R. Van Der
Wijngaart, A. Woo, and M. Yarrow, ―The NAS
parallel benchmarks 2.0,‖ 1995.

[3] D. H. Bailey, ―The NAS Parallel Benchmarks:
History and Impact,‖ 2015.

[4] M. Dey, A. Nazari, A. Zajic, and M. Prvulovic,
―EMPROF: Memory Profiling Via EM-Emanation
in IoT and Hand-Held Devices,‖ in 2018 51st
Annual IEEE/ACM International Symposium on

Microarchitecture (MICRO), 2018, pp. 881–893.

[5] J. L. Henning, ―SPEC CPU2000: Measuring CPU
performance in the new millennium,‖ Computer
(Long. Beach. Calif)., vol. 33, no. 7, pp. 28–35,
2000.

[6] X. Fu et al., ―New parsec data base of $α$-
enhanced stellar evolutionary tracks and
isochrones--I. Calibration with 47 Tuc (NGC 104)
and the improvement on RGB bump,‖ Mon. Not.
R. Astron. Soc., vol. 476, no. 1, pp. 496–511,
2018.

[7] R. West, P. Zaroo, C. A. Waldspurger, and X.
Zhang, ―Online cache modeling for commodity
multicore processors,‖ ACM SIGOPS Oper. Syst.
Rev., vol. 44, no. 4, pp. 19–29, 2010.

[8] G. Liu, J. Park, and D. Marculescu, ―Dynamic
thread mapping for high-performance, power-
efficient heterogeneous many-core systems,‖ in
2013 IEEE 31st international conference on
computer design (ICCD), 2013, pp. 54–61.

[9] M. Qureshi, ―Utility-based cache partitioning: A
low-overhead, high-performance, runtime
mechanism to partition shared caches,‖ Proc. 39th
Annu. IEEE/ACM, 2006.

[10] D. Chandra, F. Guo, and S. Kim, ―Predicting inter-

thread cache contention on a chip multi-processor
architecture,‖ Comput. Archit., pp. 340–351, 2005.

[11] X. Zhang, S. Dwarkadas, and K. Shen, ―Towards
practical page coloring-based multicore cache
management,‖ in Proceedings of the 4th ACM

European conference on Computer systems, 2009,
pp. 89–102.

[12] T. Dey, W. Wang, and J. W. Davidson,
―Characterizing multi-threaded applications based
on shared-resource contention,‖ Syst. Softw., pp.
76–86, 2011.

[13] S. Zhuravlev and S. Blagodurov, ―Addressing
shared resource contention in multicore processors
via scheduling,‖ ACM SIGARCH Comput., vol.
38, no. 1, pp. 129–142, 2010.

[14] M. D. Hill and A. J. Smith, ―Evaluating
associativity in CPU caches,‖ Comput. IEEE
Trans., vol. 38, no. 12, pp. 1612–1630, 1989.

[15] R. Knauerhase, P. Brett, B. Hohlt, and T. Li,

―Using OS observations to improve performance
in multicore systems,‖ Micro, IEEE, pp. 54–66,
2008.

[16] Y. Xie and G. H. Loh, ―Dynamic Classification of
Program Memory Behaviors in CMPs,‖ Cmp-
Msi’08, no. June, pp. 1–9, 2008.

[17] Y. Jiang, X. Shen, and J. Chen, ―Analysis and
approximation of optimal co-scheduling on chip
multiprocessors,‖ Proc. 17th, 2008.

[18] Y. Wang, Y. Cui, P. Tao, H. Fan, Y. Chen, and Y.
Shi, ―Reducing Shared Cache Contention by
Scheduling Order Adjustment on Commodity
Multi-cores,‖ 2011 IEEE Int. Symp. Parallel
Distrib. Process. Work. Phd Forum, pp. 984–992,
May 2011.

[19] S. Kumar and P. K. Singh, ―An overview of
modern cache memory and performance analysis
of replacement policies,‖ in 2016 IEEE
International Conference on Engineering and
Technology (ICETECH), 2016, pp. 210–214.

International Journal of Computer Trends and Technology (IJCTT) – Volume 67 Issue 5- May 2019

ISSN: 2231-2803 http://www.ijcttjournal.org Page 62

[20] M. Tawarmalani, K. Kannan, and P. De,
―Allocating objects in a network of caches:
Centralized and decentralized analyses,‖ Manage.
Sci., vol. 55, no. 1, pp. 132–147, 2009.

[21] I. Atoum, A. Otoom, and A. Abu Ali, ―Holistic
Cyber Security Implementation Frameworks: A
Case Study of Jordan,‖ International Journal of
Information, Business and Management, vol. 9,
no. 1. Elite Hall Publishing House, Taiwan ,
Republic of China, pp. 108–118, 2017.

[22] I. Atoum and A. Otoom, ―Mining Software
Quality from Software Reviews : Research Trends
and Open Issues,‖ International Journal of
Computer Trends and Technology (IJCTT), vol.
31, no. 2. Seventh Sense Research GroupTM, pp.
74–83, 2016.

[23] D. Smirnov and P. Stutz, ―Use case driven
approach for ontology-based modeling of
reconnaissance resources on-board UAVs using
OWL,‖ in 2017 IEEE Aerospace Conference,
2017, pp. 1–17.

[24] K. Rohloff and J. Loyall, ―An Ontology for
Resource Sharing,‖ in Semantic Computing
(ICSC), 2011 Fifth IEEE International Conference
on, 2011, pp. 530–537.

[25] G. Vandita and G. Sugandha, ―Service
Differentiation based on Contention Window with
Enhanced Collision Resolution LR-WPANs,‖ Int.
J. Comput. Trends Technol., vol. 19, no. 2, pp. 86–
90, 2015.

[26] M. R. Ayyagari, ―Integrating Association Rules
with Decision Trees in ObjectRelational
Databases,‖ Int. J. Comput. Trends Technol., vol.
67, no. 3, pp. 102–108, 2019.

[27] M. R. Ayyagari and I. Atoum, ―CMMI-DEV
Implementation Simplified : A Spiral Software
Model,‖ Int. J. Adv. Comput. Sci. Appl., vol. 10,
no. 4, pp. 445–450, 2019.

[28] M. R. Ayyagari, ―iScrum: Effective Innovation
Steering using Scrum Methodology,‖ Int. J.
Comput. Appl., vol. 178, no. 10, pp. 8–13, May
2019.

[29] S. Zhuravlev and J. C. Saez, Survey of Scheduling

Techniques for Addressing Shared Resources in
Multicore Processors, vol. V, no. September.
2011.

[30] M. Mao, Y. Peng, and M. Spring, ―Ontology
mapping: as a binary classification problem,‖

Concurr. Comput. Pract. Exp., vol. 23, no. 9, pp.
1010–1025, Dec. 2011.

[31] J. Davies, R. Studer, and P. Warren, Semantic
Web Technologies: Trends and Research in
Ontology-based Systems, vol. 3, no. 1. John Wiley
& Sons, 2006.

[32] J. Lehmann, S. Auer, S. Tramp, and others, ―Class
expression learning for ontology engineering,‖
Web Semant. Sci. Serv. Agents World Wide Web,
2011.

